Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Microbiol ; 50(2): 196-211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400715

RESUMO

Antimicrobial resistance (AMR) in clinically priority pathogensis now a major threat to public health worldwide. Phages are bacterial parasites that efficiently infect or kill specific strains and represent the most abundant biological entities on earth, showing great attraction as potential antibacterial therapeutics in combating AMR. This review provides a summary of phage-inspired strategies to combat AMR. We firstly cover the phage diversity, and then explain the biological principles of phage therapy that support the use of phages in the post-antimicrobial era. Furthermore, we state the versatility methods of phage therapy both from direct access as well as collateral access. Among the direct access approaches, we discuss the use of phage cocktail therapy, phage-encoded endolysins and the bioengineering for function improvement of used phages or endolysins. On the other hand, we introduce the collateral access, including the phages antimicrobial immunity combined therapy and phage-based novel antibacterial mimic molecules. Nowadays, more and more talented and enthusiastic scientist, doctors, pharmacists, media, authorities, and industry are promoting the progress of phage therapy, and proposed more phages-inspired strategy to make them more tractable to combat AMR and benefit more people, more animal and diverse environment in "one health" framework.


Assuntos
Bacteriófagos , Animais , Humanos , Bactérias/genética , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
2.
Bioresour Technol ; 395: 130318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219924

RESUMO

Quorum sensing potentially helps microorganisms adapt to antibiotic stress encountered in the environment. This experiment investigated the effect of acyl homoserine endolipid-like signaling molecules on microbial antibiotic resistance gene structures in aqueous sediments under florfenicol stress. Additional acyl homoserine endolipid-like signaling molecules (AHLs) alter the structure of multidrug resistance genes in florfenicol-stressed sediments, particularly the multidrug resistance efflux pump gene family. Prophages and integrative and conjugative elements (ICEs) determined the resistance genes structure, and pathways related to mobile genetic elements (MGEs) transfer may play an essential role in this process. The practical application of AHLs to regulate quorum sensing systems may alter bacterial stress responses to environmental florfenicol residues, thereby reducing the development of antibiotic resistance in the environment.


Assuntos
Homosserina , Tianfenicol , Tianfenicol/análogos & derivados , Homosserina/metabolismo , Tianfenicol/farmacologia , Percepção de Quorum/genética , Antibacterianos/farmacologia , Acil-Butirolactonas/metabolismo
3.
Virus Evol ; 9(2): vead067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089014

RESUMO

Antibiotic-resistant bacteria are current threats to available antibiotic therapies, and this has renewed interest in the therapeutic use of phage as an alternative. However, development of phage resistance has led to unsuccessful therapeutic outcomes. In the current study, we applied phage training to minimize bacterial phage resistance and to improve treatment outcome by adapting the phage to their target hosts during co-evolution. We isolated and characterized a novel Pseudomonas aeruginosa N4-like lytic phage (PWJ) from wastewater in Yangzhou, China. PWJ is a double-stranded DNA podovirus that can efficiently lyse the model strain ATCC 27,853 and opportunistic pathogen PAO1. Genome sequencing of PWJ revealed features similar to those of the N4-like P. aeruginosa phage YH6. We used PWJ to screen for an evolved trained phage (WJ_Ev14) that restored infectivity to PWJ phage bacterial resisters. BLASTN analysis revealed that WJ_Ev14 is identical to its ancestor PWJ except for the amino acid substitution R1051S in its tail fiber protein. Moreover, phage adsorption tests and transmission electron microscopy of resistant bacteria demonstrated that the R1051S substitution was most likely the reason WJ_Ev14 could re-adsorb and regain infectivity. Furthermore, phage therapy assays in vitro and in a mouse P. aeruginosa lung infection model demonstrated that PWJ treatment resulted in improved clinical results and a reduction in lung bacterial load whereas the joint phage cocktail (PWJ+ WJ_Ev14) was better able to delay the emergence of resister bacteria. The phage cocktail (PWJ +WJ_Ev14) represents a promising candidate for inclusion in phage cocktails developed for clinical applications.

4.
Bioresour Technol ; 365: 128113, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252762

RESUMO

Paracoccus denitrificans can adapt to complex environmental changes and sRNAs play crucial roles during this process. This work aim to identify antibiotic-induced sRNA that regulated denitrification and explored its potential for functional enhancement of this process. Target prediction indicated complementary base pairing between the denitrifying gene nosZ and the sRNA Pda200. Anaerobic culture of P. denitrificans ATCC 19367 in the presence of florfenicol (FF) resulted in significant decreases in nosZ and Pda200 gene expression (p < 0.01). Two additional denitrifiers isolated from contaminated sediment were co-cultured with ATCC 19367 to generate a consortium. And an inducible Pda200 expression strain was also added. The results revealed that Pda200 significantly enhanced napA, napB and norB expression in different types of denitrifiers under FF condition (p < 0.05 âˆ¼ 0.001). This study identified the sRNA Pda200 as a novel positive regulator of denitrification, which may realize the efficient treatment of antibiotic-contaminated wastewater by microbial agents.


Assuntos
Desnitrificação , Paracoccus denitrificans , Desnitrificação/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Águas Residuárias
5.
Front Microbiol ; 13: 968592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060772

RESUMO

Brucella can inhabit hostile environments, including osmotic stress. How Brucella responds collectively to osmotic stress is largely unexplored, particularly in spatially structured communities such as a biofilm. To gain insight into this growth mode, we set out to characterize the Brucella melitensis 16M biofilm, describe its phenotype, and carry out a comparative transcriptomic analysis between biofilms under osmotic stress and control conditions. We determined that the bacteria challenged with 1.5 M NaCl had a reduced ability to aggregate and form clumps and develop a biofilm; however, the salt stress promoted the release of the outer membrane vesicles from the biofilm. Together with the genotypical response to osmotic stress, we identified 279 differentially expressed genes in B. melitensis 16M grown under osmotic conditions compared with control conditions; 69 genes were upregulated and 210 downregulated. Under osmotic stress, the main changed genes of biofilm were predicted to be involved in flagellar assembly, cell envelope, translation, small RNA regulation, transport and binding proteins, and energy metabolism. In addition, the ABC transporter was enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We highlight 12 essential ABC transporter genes associated with a bacterial response to osmotic stress at the biofilm stage, including one specific locus, BME_RS12880, mediating betaine accumulation in biofilms to eliminate osmotic stress. The current study results can help researchers gain insights into B. melitensis 16M biofilm adaptation to osmotic stress and provide information for developing intervention strategies to control Brucella.

6.
Microbiol Spectr ; 10(5): e0141022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069562

RESUMO

The P1-like phage plasmid (PP) has been widely used as a molecular biology tool, but its role as an active accessory cargo element is not fully understood. In this study, we provide insights into the structural features and gene content similarities of 77 P1-like PPs in the RefSeq database. We also describe a P1-like PP carrying a blaCTX-M-55 gene, JL22, which was isolated from a clinical strain of Escherichia coli from a duck farm. P1-like PPs were very similar and conserved based on gene content similarities, with only eight highly variable regions. Importantly, two kinds of replicon types, namely, IncY and p0111, were identified and can be used to specifically identify the P1-like phage. JL22 is similar to P1, acquiring an important foreign DNA fragment with two obvious features, namely, the plasmid replication gene repA' (p0111) replacing the gene repA (IncY) and a 4,200-bp fragment mobilized by IS1380 and IS5 and containing a blaCTX-M-55 gene and a trpB gene encoding tryptophan synthase (indole salvaging). The JL22 phage could be induced but had no lytic capacities. However, a lysogenic recipient and intact structure of JL22 virions were observed, showing that the extended-spectrum ß-lactamase blaCTX-M-55 gene was successfully transferred. Overall, conserved genes can be a good complement to improve the identification efficiency and accuracy in future screening for P1-like PPs. Moreover, the highly conserved structures may be important for their prevalence and dissemination. IMPORTANCE As a PP, P1 DNA exists as a low-copy-number plasmid and replicates autonomously with a lysogenization style. This unique mode of P1-like elements probably indicates a stable contribution to antibiotic resistance. After analyzing these elements, we show that P1-like PPs are very similar and conserved, with only eight highly variable regions. Moreover, we observed the occurrence of replicon IncY and p0111 only in the P1-like PP community, implying that these conserved regions, coupled with IncY and p0111, can be an important complement in future screening of P1-like PPs. Identification and characterization of JL22 confirmed our findings that major changes were located in variable regions, including the first detection of blaCTX-M-55 in such a mobile genetic element. This suggests that these variable regions may facilitate foreign DNA mobilization. This study features a comprehensive genetic analysis of P1-like PPs, providing new insights into the dissemination mechanisms of antibiotic resistance through P1 PPs.


Assuntos
Bacteriófagos , Triptofano Sintase , beta-Lactamases/genética , Bacteriófagos/genética , Triptofano Sintase/genética , Plasmídeos/genética , Escherichia coli , Indóis , Antibacterianos/farmacologia
7.
Sci Total Environ ; 832: 155035, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395307

RESUMO

Antimicrobial agents enter the ecological environment through animal excreta and disrupt metabolism in environmental microorganisms. Quorum sensing (QS) can help bacteria adapt to their surroundings. To explore how acyl-homoserine lactone (AHL) can adjust the influence of florfenicol on nitrogen cycling and methane metabolism in anaerobic fermentation, a small indoor thermostatic anaerobic fermentation model was established by adding exogenous acylated homoserine lactone (AHL) signal molecules with florfenicol as the stress factor. Through bacterial function prediction by PICRUST, we found that the addition of AHL further increased the promotion of methanogenesis_by_CO2_reduction_with_H2 and hydrogenotrophic methanogenesis by florfenicol. Before the third sampling, florfenicol significantly inhibited the enrichment of the denitrification pathway microbiota, whereas the addition of AHL significantly promoted the enrichment of the denitrification pathway microbiota. Functional annotation showed that florfenicol exposure stress significantly affected nitrogen and methane metabolism, and the addition of AHLs reduced the response of functional genes to florfenicol. All nitrogen cycling enzymes with significantly different abundances in treatment groups were substantially associated with methane-metabolizing enzymes. Glutamate metabolism is significant in the process of anaerobic fermentation, and is a correlation point between nitrogen and methane metabolism. In our experiment, AHL was the influencing factor at the highest latitude that directly regulates the metabolism of NO3--N and the degradation process of florfenicol. The addition of AHL curbed the inhibitory effect of florfenicol on some functional microbiota, improved the stability of fermentation microbiota, and weakened the impact of antibiotic residues by improving its degradation efficiency.


Assuntos
Acil-Butirolactonas , Homosserina , Anaerobiose , Animais , Fermentação , Homosserina/metabolismo , Metano/metabolismo , Nitrogênio , Tianfenicol/análogos & derivados
8.
PLoS One ; 17(3): e0264234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290990

RESUMO

Few studies have characterized the microbial community and metabolite profile of solid food waste fermented products from centralized treatment facilities, which could potentially be processed into safe animal feeds. In this study, 16S rRNA gene sequencing and liquid/gas chromatography-mass spectrometry were conducted to investigate the bacterial community structure and metabolite profile of food waste samples inoculated with or without 0.18% of a commercial bacterial agent consisting of multiple unknown strains and 2% of a laboratory-made bacterial agent consisting of Enterococcus faecalis, Bacillus subtilis and Candida utilis. Our findings indicated that microbial inoculation increased the crude protein content of food waste while reducing the pH value, increasing lactic acid production, and enhancing aerobic stability. Microbial inoculation affected the community richness, community diversity, and the microbiota structure (the genera with abundances above 1.5% in the fermentation products included Lactobacillus (82.28%) and Leuconostoc (1.88%) in the uninoculated group, Lactobacillus (91.85%) and Acetobacter (2.01%) in the group inoculated with commercial bacterial agents, and Lactobacillus (37.11%) and Enterococcus (53.81%) in the group inoculated with homemade laboratory agents). Microbial inoculation reduced the abundance of potentially pathogenic bacteria. In the metabolome, a total of 929 substances were detected, 853 by LC-MS and 76 by GC-MS. Our results indicated that inoculation increased the abundance of many beneficial metabolites and aroma-conferring substances but also increased the abundance of undesirable odors and some harmful compounds such as phenol. Correlation analyses suggested that Leuconostoc, Lactococcus, and Weissella would be promising candidates to improve the quality of fermentation products. Taken together, these results indicated that inoculation could improve food waste quality to some extent; however, additional studies are required to optimize the selection of inoculation agents.


Assuntos
Microbiota , Eliminação de Resíduos , Animais , Fermentação , Alimentos , Microbiologia de Alimentos , Leuconostoc/genética , Metaboloma , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Resíduos
9.
Viruses ; 13(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696499

RESUMO

Bacteriophages are the most abundant biological entities on earth and may play an important role in the transmission of antibiotic resistance genes (ARG) from host bacteria. Although the specialized transduction mediated by the temperate phage targeting a specific insertion site is widely explored, the carrying characteristics of "transducing particles" for different ARG subtypes in the process of generalized transduction remains largely unclear. Here, we isolated a new T4-like lytic phage targeting transconjugant Escherichia coli C600 that contained plasmid pHNAH67 (KX246266) and encoded 11 different ARG subtypes. We found that phage AH67C600_Q9 can misload plasmid-borne ARGs and package host DNA randomly. Moreover, for any specific ARG subtype, the carrying frequency was negatively correlated with the multiplicity of infection (MOI). Further, whole genome sequencing (WGS) identified that only 0.338% (4/1183) of the contigs of an entire purified phage population contained ARG sequences; these were floR, sul2, aph(4)-Ia, and fosA. The low coverage indicated that long-read sequencing methods are needed to explore the mechanism of ARG transmission during generalized transduction.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/genética , Resistência Microbiana a Medicamentos/genética , Plasmídeos , Bactérias/efeitos dos fármacos , Bacteriófagos/isolamento & purificação , Empacotamento do DNA/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos/efeitos dos fármacos , Genoma Viral , Alinhamento de Sequência
10.
Ecotoxicol Environ Saf ; 222: 112552, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325201

RESUMO

Huge number of antibiotic resistance genes (ARGs) have been widely detected in phage genomes from anthropogenic environment or animal farms, whereas little is known about the dynamic changes of phage contribution to resistance under a feedlot wastewater treatment facility (WTF) pressure. Here, a metagenomics method was used to characterize the sewage phageome and identifies the antibiotic resistome. The results showed that the phage families of Siphoviridae, Myoviridae, and Podoviridae were always the most dominant. Analysis of ARGs carried by bacterial and phages showed that MLS and tetracycline resistance genes always had the highest abundances and the other ARG types also have a fixed hierarchy, showing that there is no significant change in overall ARGs abundance distribution. However, an extensively cored antibiotic resistome were specifically identified in aerobic environment. ARGs encoding ribosomal protection proteins, especially for the ARG subtypes lsaE, tet44, tetM, tetP, macB, MdlB and rpoB2, were more inclined to be selected by phages, suggesting that a more refined mechanism, such as specialized transduction and lateral transduction, was probably involved. In all, these results suggest that monitoring of dynamic changes of phage contribution to resistance should be given more attention and ARGs-carrying phage management should focus on using technologies for controlling cored ARGs rather than only the overall distribution of ARGs in phages.


Assuntos
Metagenômica , Purificação da Água , Animais , Antibacterianos , Genes Bacterianos , Suínos , Viroma , Águas Residuárias
11.
Sci Total Environ ; 785: 147294, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932672

RESUMO

Antibiotic residuals disrupt environmental microbial metabolism and can alter the nitrogen cycle. Quorum sensing has both inter- and intra-species effects that are directly related to the population densities necessary for microbial nitrogen cycling. Here, we explored how acyl-homoserine lactones (AHLs) can change the response of nitrogen cycling to florfenicol in sediments. AHLs might promote microbial reproduction in sediment under florfenicol stress. The relative abundances of Proteobacteria and Euryarchaeota in the antibiotic and AHL treatment groups were higher than those in the control group. AHLs reduced the effects of antibiotics on the abundance of Nitrospira at sampling times of 3d, 10d, and 20d. In the annotation results, nitrate reductase showed the highest abundance, followed by nitrite reductase, nitrogenase, nitric oxide (NO) reductase, nitrous oxide reductase, and ammonia monooxygenase. The abundances of these genes have changed in response to pressure by florfenicol and the addition of AHLs. We also found significant associations between the nitrogen cycle-related functional genes and dominant genera. In particular, glutamate metabolic enzymes and nitrate/nitrite transporters were the primary participants in correlation. Florfenicol can rapidly alter microbial community structures in sediments, affect the functional diversity of microorganisms, and hinder the nitrogen cycle. The response of microorganisms to florfenicol was regulated by the addition of AHLs. This process might alter the use and production of nitrogenous substances in the environment by functional communities in sediments.


Assuntos
Acil-Butirolactonas , Tianfenicol , Humanos , Nitrogênio , Ciclo do Nitrogênio , Tianfenicol/análogos & derivados
12.
Ecotoxicol Environ Saf ; 219: 112355, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34049225

RESUMO

Florfenicol (FF) is widely used in aquaculture and can interfere with denitrification when released into natural ecosystems. The aim of this study was to analyze the response characteristics of nirS-type denitrifier Paracoccus denitrificans under FF stress and further mine antibiotic-responsive factors in aquatic environment. Phenotypic analysis revealed that FF delayed the nitrate removal with a maximum inhibition value of 82.4% at exponential growth phase, leading to nitrite accumulation reached to 21.9-fold and biofilm biomass decreased by ~38.6%, which were due to the lower bacterial population count (P < 0.01). RNA-seq transcriptome analyses indicated that FF treatment decreased the expression of nirS, norB, nosD and nosZ genes that encoded enzymes required for NO2- to N2 conversion from 1.02- to 2.21-fold (P < 0.001). Furthermore, gene associated with the flagellar system FlgL was also down-regulated by 1.03-fold (P < 0.001). Moreover, 10 confirmed sRNAs were significantly induced, which regulated a wide range of metabolic pathways and protein expression. Interestingly, different bacteria contained the same sRNAs means that sRNAs can spread between them. Overall, this study suggests that the denitrification of nirS-type denitrifiers can be hampered widely by FF and the key sRNAs have great potential to be antibiotic-responsive factors.


Assuntos
Antibacterianos/toxicidade , Desnitrificação/efeitos dos fármacos , Paracoccus denitrificans/efeitos dos fármacos , Tianfenicol/análogos & derivados , Bactérias/metabolismo , Ecossistema , Nitratos/metabolismo , Nitritos , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Tianfenicol/toxicidade
13.
Ecotoxicol Environ Saf ; 213: 112011, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592374

RESUMO

Denitrification play an important role in nitrogen cycle and is affected by veterinary drugs entering agricultural soils. In the present study, the effects of copper and florfenicol on denitrification, related antibiotic resistance and environmental variables were characterized using real-time quantitative PCR (qPCR) and amplicon sequencing in a short-term (30 d) soil model experiment. Drug additions significantly decreased the nirS gene abundance (P < 0.05) but maximized the abundance of gene nirK in soil containing florfenicol and moderate copper levels (150 mg kg-1). Surprisingly, copper additions decreased the fexB gene abundance, however, the abundance of gene pcoD significantly increased in soils containing florfenicol, moderate copper levels (150 mg kg-1), and florfenicol and low copper levels (30 mg kg-1), respectively (P < 0.05). Overall, the nirK-type community composition was more complex than that of nirS-type but Proteobacteria predominated (> 90%) in both communities. Correlation analysis indicated that the gene abundance of fexB was highly correlated with NH4+-N (P < 0.05) and NO3--N (P < -0.01), and floR gene abundance was positively correlated with nirK (P < 0.01). Besides, the abundance of nirS-type genera Bradyrhizobium and Pseudomonas were obviously related to total organic matter (TOM), total nitrogen (TN) or total phosphorus (TP) (P < 0.05), while the abundance of nirK-type Rhizobium, Sphingomonas and Bosea showed a significantly correlated with TOM, TN or copper contents (P < 0.05). Taken together, copper and florfenicol contamination increased the possibility of durg resistance genes spread in agricultural soils through nitrogen transformation.


Assuntos
Cobre/toxicidade , Desnitrificação/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo , Poluentes do Solo/toxicidade , Tianfenicol/análogos & derivados , Agricultura , Desnitrificação/genética , Nitrogênio , Fósforo , Proteobactérias/genética , Solo , Tianfenicol/toxicidade , Verduras
14.
Ecotoxicol Environ Saf ; 210: 111822, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418156

RESUMO

Heavy metal pollution can serve as a selective pressure for antibiotic resistance genes in polluted environments. Anaerobic fermentation, as a recommended wastewater treatment method, is an effective mitigation measure of antibiotic resistance diffusion. To explore the influence of copper on anaerobic fermentation, we exposed the fermentation substrate to copper in a laboratory setup. We found that the relative abundance of 8 genes (pcoD, tetT, tetA, tetB, tetO, qnrS, ermA and ermB) increased at the late stage of fermentation and their abundance was linked to copper content. Corynebacterium and Streptococcus were significantly positively correlated with ermA, ermB, tetA and tetB (P < 0.05). The relative abundance of tetT was significantly positively correlated with Terrisporobacter, Clostridium_sensu_stricto_1 and Turicibacter (P < 0.05). We screened 90 strains of copper resistant bacteria from blank, medium and high copper test groups on days 25, 31 and 37. The number of fragments carried by a single strain increased with time while intl1, ermA and ermB existed in almost all combinations of the multiple fragments we identified. The relative abundance of these three genes were linearly correlated with Corynebacterium and Streptococcus. The antibiotic resistance genes carried by class 1 integrons gradually increased with time in the fermentation system and integrons carrying ermA and ermB most likely contributed to host survival through the late stages of fermentation. The genera Corynebacterium and Streptococcus may be the primary carriers of such integrated mobile gene element and this was most likely the reason for their rebound in relative abundance during the late fermentation stages.


Assuntos
Cobre/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Anaerobiose , Bactérias/efeitos dos fármacos , Bactérias/genética , Fermentação/efeitos dos fármacos , Integrons/genética , Purificação da Água
15.
Vet Med Sci ; 7(3): 746-754, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33389826

RESUMO

Recombinant lysostaphin has been used for the treatment of cow endometritis and mastitis in China. To our knowledge, no scientific effort has been made to evaluate the efficacy of lysostaphin in sows with clinical endometritis. Lysostaphin, loaded in effervescent tablets that were completely foamed and dissolved within 30 min in the presence of water or body fluids and released active lysostaphin, were administered vaginally on endometritis sows in this study. The clinical recovery, bacterial clearance and reproductive performance of sows with endometritis were investigated. We found that the 400U dosage (400U lysostaphin/pill/time, repeat once on the third day, a total of two times, with 10% oxytetracycline uterine injection as a control) is the most effective treatment. Staphylococcus aureus was the most prevalent finding (34%, n = 188), followed by Streptococcus (32%, n = 181), Escherichia coli (19%, n = 104) and other bacilli (15%, n = 83) before treatment by drugs. Administration of lysostaphin resulted in an extremely significant (p < .01) reduction in S. aureus (0.18 ± 0.25 from 4.57 ± 0.33) and Streptococcus (0.11 ± 0.14 from 3.88 ± 0.29), as well as a significant (p < .05) reduction in E. coli (0.55 ± 0.42 from 3.11 ± 0.14). Mixed infections (83%) were predominant before treatment, in contrast to single infections (61%) after treatment. Large-scale trials were conducted to verify the clinical efficacy of lysostaphin on sow endometritis. The average cure rate of 400u lysostaphin on sow endometritis(82.5%) was higher than the antibiotic group(72.17%). In addition, our results revealed that intravaginal administration of lysostaphin had no adverse effect on the reproductive performance of sows. Thus, this lysostaphin has potential application value as a new method alternative to antibiotics to treat endometritis in sows.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Endometrite/veterinária , Lisostafina/uso terapêutico , Administração Intravaginal , Animais , China , Relação Dose-Resposta a Droga , Endometrite/tratamento farmacológico , Feminino , Distribuição Aleatória , Proteínas Recombinantes/uso terapêutico , Sus scrofa , Comprimidos , Resultado do Tratamento
16.
Viruses ; 12(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977432

RESUMO

The increase in antimicrobial resistance is a threat to both human and animal health. The transfer of antibiotic resistance genes (ARG) via plasmids has been studied in detail whereas the contribution of bacteriophage-mediated ARG transmission is relatively little explored. We isolated and characterized two T7-like lytic bacteriophages that infected multidrug-resistant Escherichia coli hosts. The morphology and genomic analysis indicated that both phage HZP2 and HZ2R8 were evolutionarily related and their genomes did not encode ARGs. However, ARG-like raw reads were detected in offspring sequencing data with a different abundance level implying that potential ARG packaging had occurred. PCR results demonstrated that six fragments of genes (qnrS, cmlA, tetM, blaTEM, sul3, mcr-1) were potentially packaged by phage HZP2 and four (qnrS, cmlA, blaTEM, mcr-1) by phage HZ2R8. Further quantitative results showed that ARG abundance hierarchies were similar. The gene blaTEM was the most abundant (up to 1.38 × 107 copies/mL) whereas cmlA and qnrS were the least. Moreover, the clinically important mcr-1 gene was the second most abundant ARG indicating a possibility for spread through generalized transduction. Together, our results indicated that these structurally similar phage possessed similar characteristics and potential packaging during phage-host interaction displayed an ARG preference rather than occurring randomly.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Escherichia coli , Genes Bacterianos , Podoviridae , Animais , Escherichia coli/genética , Escherichia coli/virologia , Fezes/microbiologia , Interações Hospedeiro-Patógeno , Podoviridae/genética , Podoviridae/fisiologia , Esgotos/microbiologia , Esgotos/virologia , Suínos
17.
Environ Microbiol ; 22(12): 4974-4984, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32419209

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause acute secretory diarrhoea in pigs, posing a great economic loss to the swine industry. This study analysed the prevalence and genetic characteristics of prophages from 132 ETEC isolates from symptomatic pigs to determine their potential for spreading antibiotic resistance. A total of 1105 potential prophages were identified, and the distribution of the genome size showed three 'overlapping' trends. Similarity matrix comparison showed that prophages correlated with the ETEC lineage distribution, and further identification of these prophages corroborated the lineage specificity. In total, 1206 antibiotic resistance genes (ARGs) of 52 different categories were identified in 132 ETEC strains; among these, 2.65% (32/1206) of ARGs were found to be carried by prophages. Analysis of flanking sequences showed that almost all the ARGs could be grouped into two types: 'blaTEM-1B ' and 'classic class 1 integron (IntI1)'. They co-occurred with a strictly conserved recombinase and transposon Tn3 family but with a difference: the 'blaTEM-1B type' prophages exhibited a classic Tn2 transposon structure with 100% sequence identity, whereas the 'IntI1 type' co-occurred with the TnAs2 transposon with only 84% sequence identity. These results imply that ARGs might be pervasive in natural bacterial populations through transmission by transposable bacteriophages.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli Enterotoxigênica/virologia , Infecções por Escherichia coli/veterinária , Prófagos/genética , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Diarreia/microbiologia , Diarreia/veterinária , Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/microbiologia , Suínos , Doenças dos Suínos/microbiologia
18.
Nat Commun ; 11(1): 1427, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188862

RESUMO

Anthropogenic environments have been implicated in enrichment and exchange of antibiotic resistance genes and bacteria. Here we study the impact of confined and controlled swine farm environments on temporal changes in the gut microbiome and resistome of veterinary students with occupational exposure for 3 months. By analyzing 16S rRNA and whole metagenome shotgun sequencing data in tandem with culture-based methods, we show that farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially pathogenic taxa and antimicrobial resistance genes. Comparison of students' gut microbiomes and resistomes to farm workers' and environmental samples revealed extensive sharing of resistance genes and bacteria following exposure and after three months of their visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student samples and farm environmental samples. Dynamic Bayesian network modeling predicted that the observed changes partially reverse over a 4-6 month period. Our results indicate that acute changes in a human's living environment can persistently shape their gut microbiota and antibiotic resistome.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Microbioma Gastrointestinal , Suínos/microbiologia , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fazendas , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Exposição Ocupacional , Faculdades de Medicina Veterinária , Estudantes/estatística & dados numéricos , Adulto Jovem
19.
Environ Pollut ; 259: 113901, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32023788

RESUMO

Soil antibiotic resistome and the nitrogen cycle are affected by florfenicol addition to manured soils but their interactions have not been fully described. In the present study, antibiotic resistance genes (ARGs) and nitrogen cycle genes possessed by soil bacteria were characterized using real-time fluorescence quantification PCR (qPCR) and metagenomic sequencing in a short-term (30 d) soil model experiment. Florfenicol significantly changed in the abundance of genes conferring resistance to aminoglycosides, ß-lactams, tetracyclines and macrolides. And the abundance of Sphingomonadaceae, the protein metabolic and nitrogen metabolic functions, as well as NO reductase, nitrate reductase, nitrite reductase and N2O reductase can also be affected by florfenicol. In this way, ARG types of genes conferring resistance to aminoglycosides, ß-lactamases, tetracyclines, colistin, fosfomycin, phenicols and trimethoprim were closely associated with multiple nitrogen cycle genes. Actinobacteria, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia played an important role in spreading of ARGs. Moreover, soil physicochemical properties were important factors affecting the distribution of soil flora. This study provides a theoretical basis for further exploration of the transmission regularity and interference mechanism of ARGs in soil bacteria responsible for nitrogen cycle.


Assuntos
Bactérias , Resistência Microbiana a Medicamentos , Microbiota , Microbiologia do Solo , Tianfenicol/análogos & derivados , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Ciclo do Nitrogênio , Solo/química , Tianfenicol/análise , Tianfenicol/farmacologia
20.
Environ Pollut ; 248: 1010-1019, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31091633

RESUMO

Antibiotics enter into aquatic pond sediments by wastewater and could make detrimental effects on microbial communities. In this study, we examined the effects of sulfadimidine on nitrogen removal when added to experimental pond sediments. We found that sulfadimidine increased the number of sulfadimidine resistant bacteria and significantly increased the abundance of sul2 at the end of the incubation time (ANOVA test at Tukey HSD, P < 0.05). In addition, sulfadimidine decreased the N2O reduction rate as well as the amount of nitrate reduction. Pearson correlation analysis revealed that the N2O reduction rate was significantly and negatively correlated with narG (r = -0.679, P < 0.05). In contrast, we found a significant positive correlation between the amount of nitrate reduction and the abundance of narG (r = 0.609, P < 0.05) and nirK (r = 0.611, P < 0.05). High-throughput sequencing demonstrated that Actinobacteria, Euryarchaeota, Gemmatimonadetes, Nitrospirae, Burkholderiaceae (a family of Proteobacteria), and Thermoanaerobaculaceae (a family of Firmicutes) decreased with sulfadimidine exposure. In sediments, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonbacteraeota, Euryarchaeota, Firmicutes, Gemmatimonadetes, and Spirochaetesat may play key roles in nitrogen transformation. Overall, the study exhibited a net effect of antibiotic exposure regarding nitrogen removal in an aquatic microcosm environment through a combination of biochemical pathways and molecular pathways, and draws attention to controlling antibiotic pollution in aquatic ecosystems.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Desnitrificação , Farmacorresistência Bacteriana/efeitos dos fármacos , Nitrogênio/análise , Sulfametazina/farmacologia , Águas Residuárias/química , Antibacterianos/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Nitrato Redutase/genética , Nitratos/análise , Nitrito Redutases/genética , Sulfametazina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...